Markov Chains with Hybrid Repeating Rows - Upper-Hessenberg, Quasi-Toeplitz Structure of the Block Transition Probability Matrix

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chains with Hybrid Repeating Rows – Upper-hessenberg, Quasi-toeplitz Structure of the Block Transition Probability Matrix

In this paper we consider discrete-time multidimensional Markov chains having a block transition probability matrix which is the sum of a matrix with repeating block rows and a matrix of upper-Hessenberg, quasi-Toeplitz structure. We derive sufficient conditions for the existence of the stationary distribution, and outline two algorithms for calculating the stationary distribution.

متن کامل

Stationary Probabilities of Markov Chains with Upper Hessenberg Transition Matrices

In this paper, based on probabilistic arguments, we obtain an explicit solution of the stationary distribution for a discrete time Markov chain with an upper Hessenberg time stationary transition probability matrix. Our solution then leads to a numerically stable and efficient algorithm for computing stationary probabilities. Two other expressions for the stationary distribution are also derive...

متن کامل

Approximations for Markov Chains with Upper Hessenberg Transition Matrices

Abstract We present an approximation for the stationary distribution T of a countably infinite-state Markov chain with transition probability matrix P = (pq) of upper Hessenberg form. Our approximation makes use of an associated upper Hessenberg matrix which is spatially homogeneous one P ( ~ ) except for a finite number of rows obtained by letting p q = pj-i+l, i > N + 1, for some distribution...

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form

In this paper, we present an algorithm for the reduction to block upper-Hessenberg form which can be used to solve the nonsymmetric eigenvalue problem on message-passing multicomputers. On such multicomputers, a nonsymmetric matrix can be distributed across processing nodes logically configured into a two-dimensional mesh using the block-cyclic data distribution. Based on the matrix partitionin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2008

ISSN: 0021-9002,1475-6072

DOI: 10.1017/s0021900200004071